Pricing of Basket Options
TABLE OF CONTENTS
Preliminaries: . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.1 -algebra . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.2 Probability Space . . . . . . . . . . . . . . . . . . . . . 8
1.1.3 Borel -algebra . . . . . . . . . . . . . . . . . . . . . . 8
1.1.4 A random variable: . . . . . . . . . . . . . . . . . . . . 9
1.1.5 Probability distribution . . . . . . . . . . . . . . . . . 9
1.1.6 Normal distribution . . . . . . . . . . . . . . . . . . . 9
1.1.7 A d-dimensional Normal distribution . . . . . . . . . . 10
1.1.8 Log-normal Distribution . . . . . . . . . . . . . . . . . 11
1.1.9 Mathematical Expectation . . . . . . . . . . . . . . . . 11
1.1.10 Variance and covariance of random variables: . . . . . 12
1.1.11 Characteristic function . . . . . . . . . . . . . . . . . . 12
1.1.12 Stochastic process . . . . . . . . . . . . . . . . . . . . 13
1.1.13 Sample Paths . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.14 Brownian Motion . . . . . . . . . . . . . . . . . . . . . 13
1.1.15 Filtration: . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.1.16 Adaptedness . . . . . . . . . . . . . . . . . . . . . . . 14
1.1.17 Conditional expectation . . . . . . . . . . . . . . . . . 14
1.1.18 Martingale . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1.19 Quadratic variation . . . . . . . . . . . . . . . . . . . 15
1.1.20 Stochastic differential equations . . . . . . . . . . . . . 16
1.1.21 Ito formula and lemma . . . . . . . . . . . . . . . . . . 16
1.1.22 Gamma distribution . . . . . . . . . . . . . . . . . . . 17
1.1.23 Risk-neutral Probabilities . . . . . . . . . . . . . . . . 18
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2 Literature Review 21
3 Financial Derivatives 24
3.0.1 Forward Contract . . . . . . . . . . . . . . . . . . . . 24
3.0.2 Future Contracts . . . . . . . . . . . . . . . . . . . . . 25
3.0.3 Options . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.0.4 Hedgers . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.0.5 Speculators . . . . . . . . . . . . . . . . . . . . . . . . 28
3.0.6 Arbitrageurs . . . . . . . . . . . . . . . . . . . . . . . 29
4 Pricing of Basket option 30
4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Geometric Brownian Motion . . . . . . . . . . . . . . . . . . . 32
4.3 Methods used in pricing Basket options . . . . . . . . . . . . 34
4.3.1 Numerical Methods . . . . . . . . . . . . . . . . . . . 34
4.3.2 Approximation Methods . . . . . . . . . . . . . . . . . 41
5 APPLICATION 48
5.1 Foreign Exchange Market . . . . . . . . . . . . . . . . . . . . 48
5.1.1 Quotation Style . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Foreign Exchange Basket Option . . . . . . . . . . . . . . . . 52
5.2.1 Correlation in foreign exchange . . . . . . . . . . . . . 53
5.3 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . 54
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Do You Have New or Fresh Topic? Send Us Your Topic
CHAPTER ONE
General Introduction
In this chapter we give some definitions in probability theory needed for our thesis and provide some introduction to the work.
1.1 Preliminaries:
We begin by introducing a number of probabilistic concepts.
1.1.1 -algebra
Let
be a non-empty set and B a non-empty collection of subset of, B is called a -algebra if the following properties hold:
i
2 B
ii A 2 ) A0 2
iii fAj : j 2 Jg B )
S
j2J
Aj 2 B for any nite or infinite countable
subset J of N
1.1.2 Probability Space
1. Let
be a nonempty set and B a – algebra of subsets of.
Then
the pair (; B) is called a measurable space and a member of B is called a measurable set.
2. Let (; B) be a measurable space and : B ! R be a real valued map on . Then is called a probability Measure if the following properties hold:
Pricing of Basket Options – Premium Researchers
INSTRUCTIONS AFTER PAYMENT
- 1.Your Full name
- 2. Your Active Email Address
- 3. Your Phone Number
- 4. Amount Paid
- 5. Project Topic
- 6. Location you made payment from