Project Materials

GENERAL

Monotone Operators and Applications – Premium Researchers



Do You Have New or Fresh Topic? Send Us Your Topic


Monotone Operators and Applications

TABLE OF CONTENTS

Preliminaries 7
1.1 Geometry of Banach Spaces . . . . . . . . . . . . . . . . . . . 7
1.1.1 Uniformly Convex Spaces . . . . . . . . . . . . . . . . 7
1.1.2 Strictly Convex Spaces . . . . . . . . . . . . . . . . . . 9
1.1.3 Duality Mappings. . . . . . . . . . . . . . . . . . . . 10
1.1.4 Duality maps of Lp Spaces (p > 1) . . . . . . . . . . . 13
1.2 Convex Functions and Sub-differentials . . . . . . . . . . . . . 15
1.2.1 Basic notions of Convex Analysis . . . . . . . . . . . . 15
1.2.2 Sub-differential of a Convex function . . . . . . . . . . 19
1.2.3 Jordan Von Neumann Theorem for the Existence of Saddle point . . . 20
2 Monotone operators. Maximal monotone operators. 23
2.1 Maximal monotone operators . . . . . . . . . . . . . . . . . . 23
2.1.1 Definitions, Examples and properties of Monotone Operators . . 23
2.1.2 Rockafellar’s Characterization of Maximal Monotone Operators . . . 27
2.1.3 Topological Conditions for Maximal Monotone Operators . . . 35
2.2 The sum of two maximal monotone operators . . . . . . . . . 37
2.2.1 Resolvent and Yosida Approximations of Maximal Monotone Operators . 37
2.2.2 Basic Properties of Yosida Approximations . . . . . . 38
3 On the Characterization of Maximal Monotone Operators 46
3.1 Rockafellar’s characterization of maximal monotone operators. 46
4 Applications 51
4.1 Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Uniformly Monotone Operators . . . . . . . . . . . . . . . . . 52

 

Do You Have New or Fresh Topic? Send Us Your Topic 

 

CHAPTER ONE

Preliminaries

The aim of this chapter is to provide some basic results pertaining to geometric properties of normed linear spaces and convex functions.

Some of these results, which can be easily found in textbooks are given without proofs or with a sketch of proof only.

1.1 Geometry of Banach Spaces

Throughout this chapter X denotes a real norm space and X denotes its corresponding dual. We shall denote by the pairing hx; xi the value of the function x 2 X at x 2 X. The norm in X is denoted by k k, while the norm in X is denoted by k k. If there is no danger of confusion we omit the asterisk from the notation kk and denote both
norm in X and X by the symbol k k.

As usual We shall use the symbol ! and * to indicate strong and weak convergence in X and X respectively. We shall also use w-lim to indicate the weak-star convergence in X. The space X endowed with the weak-star topology is denoted by Xw

1.1.1 Uniformly Convex Spaces

Definition 1.1. Let X be a normed linear space. Then X is said to be uniformly convex if for any ” 2 (0; 2] there exist a = (“) > 0 such that for each x; y 2 X with kxk 1, kyk 1, and kx 􀀀 yk “, we have k1

 

 

Monotone Operators and Applications – Premium Researchers


Not What You Were Looking For? Send Us Your Topic



INSTRUCTIONS AFTER PAYMENT

After making payment, kindly send the following:
  • 1.Your Full name
  • 2. Your Active Email Address
  • 3. Your Phone Number
  • 4. Amount Paid
  • 5. Project Topic
  • 6. Location you made payment from

» Send the above details to our email; contact@premiumresearchers.com or to our support phone number; (+234) 0813 2546 417 . As soon as details are sent and payment is confirmed, your project will be delivered to you within minutes.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Advertisements